Loading a Model
Load Data & Model
Assume you have trained a model and stored it under
demonstration_model
. We can now load the model and use it to make
predictions using left and right DataFrames. In the first step, both
the model and the data are loaded into memory.
import pandas as pd
from neer_match_utilities.model import Model
from neer_match_utilities.prepare import Prepare, similarity_map_to_dict
from pathlib import Path
# Load files
left = pd.read_csv('left.csv')
right = pd.read_csv('right.csv')
# Load model
loaded_model = Model.load(
'demonstration_model'
)
Harmonize Format
Next, we must ensure that the formatting logic remains consistent with that applied before training. Note that it is not necessary to redefine the similarity map, as it was stored and is loaded along with the model.
prepare = Prepare(
similarity_map=similarity_map_to_dict(
loaded_model.similarity_map
),
df_left=left,
df_right=right,
id_left='company_id',
id_right='company_id'
)
left, right = prepare.format(
fill_numeric_na=False,
to_numeric=['found_year'],
fill_string_na=True,
capitalize=True
)
Make Suggestions
Now we can make suggestions:
# Make suggestions for the first observation in left
suggestions = loaded_model.suggest(
left[:1],
right,
count=10,
verbose=0
)
suggestions
left |
right |
prediction |
|
---|---|---|---|
0 |
0 |
0 |
0.473703 |
411 |
0 |
411 |
0.381956 |
675 |
0 |
675 |
0.362005 |
256 |
0 |
256 |
0.347396 |
497 |
0 |
497 |
0.345034 |
439 |
0 |
439 |
0.341827 |
132 |
0 |
132 |
0.323066 |
529 |
0 |
529 |
0.322083 |
181 |
0 |
181 |
0.319886 |
633 |
0 |
633 |
0.319725 |
Based on this output, we can assess whether the suggestion is correct.
left.iloc[0]
company_id 1e87fc75b4
company_name GLÜCKAUF-, ACTIEN-GESELLSCHAFT FÜR BRAUNKOHLEN...
city LICHTENAU
industry BERGWERKE, HÜTTEN- UND SALINENWESEN.
purpose ABBAU VON BRAUNKOHLENLAGERN U. BRIKETTFABRIKAT...
bs_text GRUNDST CKE M GRUBENWERT M SCHACHTANLAGEN M GE...
found_year 1871.0
Name: 0, dtype: object
right.iloc[
suggestions.loc[0, 'right']
]
company_id 0008e07878
company_name „GLÜCKAUF-', ACT.-GES. FÜR BRAUNKOHLEN-VERWERT...
city
industry NACHTRAG.
purpose ABBAU VON BRAUNKOHLENLAGERN U. BRIKETTFABRIKAT...
bs_text GRUNDST CKE M GRUBENWERT M SCHACHTANLAGEN M GE...
found_year 1871.0
Name: 0, dtype: object