# Data Preparation for Training This document explains the data preparation process for training our matching model. The example data comes from a research project that digitized historic records of German joint-stock companies [(Gram et al. 2022)](https://dl.acm.org/doi/10.1145/3531533). The data contains inconsistencies in spelling, primarily due to variations in abbreviation conventions and OCR errors, across most variables. These challenges make it a compelling real-world use case for entity matching. The data consists of three files: - *left.csv* - *right.csv* - *matches.csv* ## Different Data Relationships ### 1. Loading the Data First, we import the necessary libraries and load the datasets. ``` python import random import pandas as pd matches = pd.read_csv('matches.csv') left = pd.read_csv('left.csv') right = pd.read_csv('right.csv') ``` ### 2. Inspecting the Data Let’s view the first few rows of each dataset to understand their structure. ``` python matches.head() ```
| | company_id_left | company_id_right | |-----|-----------------|------------------| | 0 | 1e87fc75b4 | 0008e07878 | | 1 | 810c9c3435 | 8bf51ba8a0 | | 2 | 571dfb67e2 | 90b6db7ed3 | | 3 | d67d97da08 | b0c68f1152 | | 4 | 22ac99ae20 | e9823a3073 |
``` python left.head() ```
| | company_id | oai_identifier | company_name | company_info_1 | company_info_2 | pdf_page_num | found_year | found_date_modified | register_year | register_date_modified | ... | effect_year | item_rank | purpose | city | bs_text | sboard_text | proc_text | capital_text | volume | industry | |----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----| | 0 | 1e87fc75b4 | 1006345701_18970010 | Glückauf-, Actien-Gesellschaft für Braunkohlen... | NaN | NaN | 627 | 1871.0 | 1871-08-03 | NaN | NaN | ... | NaN | 1.0 | Abbau von Braunkohlenlagern u. Brikettfabrikat... | Lichtenau | Grundst cke M Grubenwert M Schachtanlagen M Ge... | sichtsrat Vors Buchh ndler Abel Dietzel Gumper... | NaN | M 660 000 in 386 Priorit tsaktien M 1 500 | 1 | Bergwerke, Hütten- und Salinenwesen. | | 1 | 810c9c3435 | 1006345701_189900031 | Deutsch-Oesterreichische Mannesmannröhren-Werke | in Berlin W. u. Düsseldorf mit Zweigniederlass... | NaN | 501 | 1890.0 | 1890-07-16 | NaN | NaN | ... | NaN | 1.0 | Betrieb der Mannesmannröhren-Walzwerke in Rems... | Berlin | Generaldirektion D sseldorf Mobiliar u Utensil... | Vors Direktor Max Steinthal Stellv Karl v d He... | Dr M Fuchs A Krusche Berlin G Hethey N Eich | M 25 900 000 in 23 875 Inhaber Aktien Lit | 3 | Bergwerke, Hütten- und Salinenwesen. | | 2 | 571dfb67e2 | 1006345701_191900231 | Handwerkerbank Spaichingen, Akt.-Ges. in Spaic... | NaN | NaN | 345 | 1889.0 | 1889-11-24 | NaN | NaN | ... | NaN | 1.0 | Betrieb von Bank- und Kommissionsgeschäften in... | Spaichingen | Forderung an Aktion re Immobil Gerichtskosten ... | Vors Wilh Lobmiller Stellv Franz Xav Schmid Sa... | NaN | M 600 000 in 600 Aktien M 1000 Urspr M | 23 | Kredit-Banken und andere Geld-Institute. | | 3 | d67d97da08 | 1006345701_191300172 | Vorschuss-Anstalt für Malchin A.-G. | NaN | Letzte Statutänd. 10./7. 1900. Kapital: M. 900... | 165 | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | A | Forder Effekten u Hypoth Debit Bankguth Kassa ... | W Deutler E Buhr W Fehlow | NaN | NaN | 17 | Geld-Institute etc. | | 4 | 22ac99ae20 | 1006345701_191200161 | Kaisersteinbruch-Actiengesellschaft in Liqu. i... | NaN | NaN | 1443 | 1900.0 | 1900-03-17 | 1900.0 | 1900-04-11 | ... | 1900.0 | 1.0 | Betrieb von Steinhauereien u. aller mit dem Ba... | Köln | Steinbr che Steinhauerei Immobil Mannheim Mobi... | Vors Dr jur P Stephan Rheinbreitbach b Unkel S... | NaN | M 450 000 in 150abgest Vorz Aktien u 300 doppelt | 16 | Industrie der Steine und Erden. |

5 rows × 21 columns

``` python right.head() ```
| | company_id | oai_identifier | company_name | company_info_1 | company_info_2 | pdf_page_num | found_year | found_date_modified | register_year | register_date_modified | ... | effect_year | item_rank | purpose | city | bs_text | sboard_text | proc_text | capital_text | volume | industry | |----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----| | 0 | 0008e07878 | 1006345701_189800021 | „Glückauf-', Act.-Ges. für Braunkohlen-Verwert... | NaN | NaN | 1038 | 1871.0 | 1871-08-03 | NaN | NaN | ... | NaN | 1.0 | Abbau von Braunkohlenlagern u. Brikettfabrikat... | NaN | Grundst cke M Grubenwert M Schachtanlagen M Ge... | Vors Buchh ndler Abel Dietzel Gumpert Lehmann ... | NaN | M 660 000 in 386 Vorzugsaktien M 1500 14 Aktien | 2 | Nachtrag. | | 1 | 8bf51ba8a0 | 1006345701_189900032 | Deutsch-Oesterreichische Mannesmannröhren-Werke. | Sitz in Berlin, Generaldirektion in Düsseldorf... | NaN | 222 | 1890.0 | 1890-07-16 | NaN | NaN | ... | NaN | 1.0 | Betrieb der Mannesmannröhren-Walzwerke in Rems... | Berlin | Generaldirektion Grundst ckskonto M Mobilien U... | Vors Bankdirektor Max Steinthal Stellv Bankdir... | Dr M Fuchs A Krusche Berlin G Hethey N Eich | M 25 900 000 in 23 875 Inhaber Aktien Lit | 3 | Bergwerke, Hütten- und Salinenwesen. | | 2 | 90b6db7ed3 | 1006345701_191900232 | Handwerkerbank Spaichingen, Akt.-Ges. in Spaic... | (in Liquidation). | NaN | 168 | 1889.0 | 1889-11-24 | NaN | NaN | ... | NaN | 1.0 | Betrieb von Bank- und Kommissionsgeschäften in... | Spaichingen | NaN | Vors Wilh Lobmiller Stellv Frans Nav Schmid Sa... | NaN | M 600 000 in 600 Aktien M 1000 Urspr M | 23 | Geld-Institute etc. | | 3 | b0c68f1152 | 1006345701_191400182 | %% für Malchin A.-G. in Malchin. | (In Liquidation.) Letzte Statutänd. 10./7. 190... | NaN | 193 | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | Malchin | Forder Effekten u Hypoth Debit Bankguth Kassa ... | W Deutler E Buhr W Fehlow | NaN | NaN | 18 | Kredit-Banken und andere Geld-Institute. | | 4 | e9823a3073 | 1006345701_190700112 | Kaisersteinbruch-Actiengesellschaft in Köln, | Zweiggeschäfte in Berlin u. Hamburg. | NaN | 818 | 1900.0 | 1900-03-17 | 1900.0 | 1900-04-11 | ... | 1900.0 | 1.0 | Betrieb von Steinhauereien u. aller mit dem Ba... | Köln | Steinbr che Steinhauerei Grundst ck Mannheim M... | Vors Rechtsanw Dr jur Max Liertz Stellv Stadtb... | NaN | M 900 000 in 900 Aktien wovon 600 abgest M | 11 | Industrie der Steine und Erden. |

5 rows × 21 columns

All three DataFrames have the same number of observations: ``` python print(f'Number of observations in matches: {len(matches)}') print(f'Number of observations in left: {len(left)}') print(f'Number of observations in right: {len(right)}') ``` Number of observations in matches: 692 Number of observations in left: 692 Number of observations in right: 692 ### 3. Simulating a Many-to-Many Relationship To demonstrate how to handle more complex matching scenarios, we simulate a many-to-many (m:m) relationship. For instance, assume that the company with `company_id` *1e87fc75b4* in the *left* DataFrame should match with two entries in the *right* DataFrame: the original match *0008e07878* and an additional match *8bf51ba8a0*. ``` python # Add an extra match to simulate a many-to-many relationship extra_match = pd.DataFrame({ 'company_id_left' : ['1e87fc75b4'], 'company_id_right' : ['8bf51ba8a0'] }) matches = pd.concat([matches, extra_match], ignore_index=True) ``` Now, inspect the modified `matches` dataframe for the affected IDs: ``` python matches[ matches['company_id_left'].isin(['1e87fc75b4', '810c9c3435']) | matches['company_id_right'].isin(['0008e07878', '8bf51ba8a0']) ] ```
| | company_id_left | company_id_right | |-----|-----------------|------------------| | 0 | 1e87fc75b4 | 0008e07878 | | 1 | 810c9c3435 | 8bf51ba8a0 | | 692 | 1e87fc75b4 | 8bf51ba8a0 |
### 4. Understanding the Matching Issue Simply adding a new row to the *matches* DataFrame can be problematic. Consider this simplified example: | Left | Right | Implied Real-World Entity | |------|-------|---------------------------| | A | C | Entity 1 | | B | D | Entity 2 | If further evidence shows that record *A* and record *C* represent the same entity, then all related records (*A*, *B*, *C*, *D*) should be grouped together. This comprehensive grouping implies that every possible pair among these records should be represented (as shown in the first six rows of the table below). Notice that the observations *B* and *C* would consequently appear in both the *Left* and *Right* columns. Therefore, the *left* and *right* DataFrames need to be adjusted, ensuring these observations will be included in both of these DataFrames. As a result, the *matches* DataFrame must be expanded with an additional set of corresponding entries (highlighted by the orange rows): | Left | Right | |----|----| | A | B | | A | C | | A | D | | B | C | | B | D | | C | D | | B | B | | C | C | This example highlights why a naive approach (merely adding an extra match) does not fully capture the nature of the linking problem. ### 5. Correcting the Relationships To resolve this issue and correctly group all records representing the same real-world entity, we use the `data_preparation_cs` method from the `SetupData` class in the `neer_match_utilities.panel` module. This method automatically completes the matching pairs and adjusts the `left` and `right` datasets accordingly. ``` python from neer_match_utilities.panel import SetupData left, right, matches = SetupData(matches=matches).data_preparation_cs( df_left=left, df_right=right, unique_id='company_id' ) ``` ### 6. Verifying the Adjustments Finally, we verify that the adjustments correctly reflect the intended relationships by checking the relevant company IDs in the updated datasets. ``` python # Verify the updated matches for the specific company_ids artificial_group = ['1e87fc75b4', '810c9c3435', '0008e07878', '8bf51ba8a0'] matches_subset = matches[ matches['left'].isin(artificial_group) | matches['right'].isin(artificial_group) ].sort_values(['left', 'right']) matches_subset ```
| | left | right | |-----|------------|------------| | 0 | 0008e07878 | 1e87fc75b4 | | 1 | 0008e07878 | 810c9c3435 | | 2 | 0008e07878 | 8bf51ba8a0 | | 696 | 1e87fc75b4 | 1e87fc75b4 | | 183 | 1e87fc75b4 | 810c9c3435 | | 184 | 1e87fc75b4 | 8bf51ba8a0 | | 705 | 810c9c3435 | 810c9c3435 | | 524 | 810c9c3435 | 8bf51ba8a0 |
``` python # Check the corresponding records in the left dataset left_subset = left[ left['company_id'].isin(artificial_group) ][['company_id']] left_subset.head(10) ```
| | company_id | |-----|------------| | 0 | 0008e07878 | | 181 | 1e87fc75b4 | | 521 | 810c9c3435 |
``` python # Check the corresponding records in the right dataset right_subset = right[ right['company_id'].isin(artificial_group) ][['company_id']] right_subset ```
| | company_id | |-----|------------| | 19 | 1e87fc75b4 | | 191 | 810c9c3435 | | 223 | 8bf51ba8a0 |
By following these steps, we ensure that the data accurately represents the underlying real-world relationships, even when the matching is more complex than a simple 1:1 mapping. To not have the manual change affect the next steps, we drop observations associated with these IDs. ``` python left = left[~left['company_id'].isin(artificial_group)].reset_index(drop=False) right = right[~right['company_id'].isin(artificial_group)].reset_index(drop=False) matches = matches[ (~matches['left'].isin(artificial_group)) & (~matches['right'].isin(artificial_group)) ].reset_index(drop=False) ``` ------------------------------------------------------------------------ ## Formatting ### 1. A customized `similarity_map` Set up the `similarity_map`. Note that the columns as `city`, `industry`, and `purpose` contain missing values. One way to improve the handling of these is to include a custom [similarity function](https://github.com/maliedvp/py-neer-match/blob/custom_similarity_functions/src/neer_match/similarity_map.py) `notmissing` to the `similarity_map` that returns 0 if a least one observation of a record pair is any missing value (`None`, `np.nan`, `pd.nan` or and empty string) and 1 otherwise. Similarly, for numeric columns, the custom function `notzero` is added. These functions are not part of the released version of `neer_match.similarity_map.available_similarities()`, which is why they are outcommented in the example below. ``` python from neer_match.similarity_map import SimilarityMap similarity_map = { "company_name" : [ "levenshtein", "jaro_winkler", "prefix", "postfix", "token_sort_ratio", "token_set_ratio", "partial_token_set_ratio", "partial_token_sort_ratio", ], "city" : [ "levenshtein", "jaro_winkler", # "notmissing" ], "industry" : [ "levenshtein", "jaro_winkler", # "notmissing" ], "purpose" : [ "levenshtein", "jaro_winkler", # "notmissing", "token_sort_ratio", "token_set_ratio", "partial_token_set_ratio", "partial_token_sort_ratio", ], "bs_text" : [ "levenshtein", "jaro_winkler", # "notmissing", "token_sort_ratio", "token_set_ratio", "partial_token_set_ratio", "partial_token_sort_ratio", ], "found_year" : [ # "notzero", "discrete" ], } smap = SimilarityMap(similarity_map) ``` ### 2. Harmonizing the data Next, data formatting can be harmonized using the `Prepare` class. This class enables operations such as capitalizing string variables and converting other values to numeric types. Importantly, these operations are applied consistently to both the *left* and *right* DataFrames. ``` python from neer_match_utilities.prepare import Prepare # Initialize the Prepare object prepare = Prepare( similarity_map=similarity_map, df_left=left, df_right=right, id_left='company_id', id_right='company_id' ) # Get formatted and harmonized datasets left, right = prepare.format( fill_numeric_na=False, to_numeric=['found_year'], fill_string_na=True, capitalize=True ) ``` ``` python left.head() ```
| | company_id | company_name | city | industry | purpose | bs_text | found_year | |----|----|----|----|----|----|----|----| | 0 | 008fbe2454 | BETRAG IN RÜCKZAHLBAR VERSTÄRKTE | RÜCKZAHLBAR | ELEKTRISCHE STRASSENBAHNEN, KLEIN- UND PFERDEB... | | BAHNH FE U GRUNDST CKE BAHNBAU U H LEITUNG MOT... | NaN | | 1 | 00a050af9d | ZUCKERFABRIK HARSUM IN HARSUM, PROV. HANNOVER. | HANNOVER | ZUCKER-FABRIKEN UND ZUCKER-RAFFINERIEN. | FABRIKATION VON ROHZUCKER. PRODUKTION 1896/97–... | GRUNDST CK M GEB UDE M MASCHINEN U APPARATE M | 1873.0 | | 2 | 00ce66e5a8 | AKTIENGESELLSCHAFT FÜR LINIIR-APPARATE, PATENT... | LEIPZIG | METALL-INDUSTRIE. | ERWERB, AUSBEUTUNG UND SONSTIGE VERWERTUNG DER... | PATENTE BETRIEBSMASCHINEN INVENTAR UTENSIL WAR... | 1899.0 | | 3 | 00d74f0e0b | DEUTSCHE RÜCK- U. MITVERSICHERUNGS-GESELLSCHAF... | BERLIN | VERSICHERUNGS-GESELLSCHAFTEN ALLER BRANCHEN. | | AKTIENWECHSEL M EFFEKTEN M HYP DARLEHEN M INVE... | 1885.0 | | 4 | 01077b1f46 | GEBRÜDER ZSCHILLE TUCHFABRIK | GROSSENHAIN | TEXTIL-INDUSTRIE. | ÜBERNAHME UND FORTBETRIEB DER DER FIRMA GEBR. ... | | 1899.0 |
``` python right.head() ```
| | company_id | company_name | city | industry | purpose | bs_text | found_year | |----|----|----|----|----|----|----|----| | 0 | 0562ddb063 | DEUTSCHE GAS-SELBSTZÜNDER-A.-G. IN BERLIN, HOL... | BERLIN | GESELLSCHAFTEN FÜR GAS-, PETROLEUM- UND SPIRIT... | HERSTELLUNG U. VERTRIEB VON GASSELBSTZÜNDERN, ... | KASSA BANKGUTH AUSSENST NDE VORSCHUSS ZAHLUNG ... | 1897.0 | | 1 | 05cdac2565 | ACT.-GES. FÜR GRUNDBESITZ U. HYPOTHEKENVERKEHR... | BERLIN | BAU-BANKEN, BAU-, TERRAIN- UND IMMOBILIEN-GESE... | | IMMOBIL I DO II EIG HYPOTH WERTP PFLASTERKAUTI... | 1883.0 | | 2 | 0a1e2ae043 | KIELER DOCK GESELLSCHAFT J. W. SEIBEL IN KIEL. | KIEL | SCHIFFSBAU-ANSTALTEN UND DOCK-GESELLSCHAFTEN. | ERWERB U. BETRIEB VON SCHWIMMDOCKS. GEDOCKT WU... | DOCKBAU INVENTAR KASSA BANKGUTH SWENTINE DOCK ... | 1876.0 | | 3 | 0bab236590 | HESSISCHE EISENBAHN-AKTIENGESELLSCHAFT IN DARM... | DARMSTADT | ELEKTRISCHE STRASSENBAHNEN, KLEIN- UND PFERDEB... | ERBAUUNG, ERWERBUNG, PACHTUNG U. BETRIEB VON B... | | 1912.0 | | 4 | 1090024903 | \* BEVENSER MASCHINENFABRIK AKT.-GES. IN BEVENSEN | BEVENSEN | MASCHINEN- UND ARMATUREN-FABRIKEN, EISENGIESSE... | ÜBERNAHME U. FORTBETRIEB DES FABRIKATIONS- U. ... | | 1909.0 |
## Re-Structuring `neer-match` requires that the *matches* DataFrame be structured with the indices from the left and right datasets instead of their unique IDs. To convert your *matches* DataFrame into the required format, you can run: ``` python from neer_match_utilities.training import Training training = Training( similarity_map=similarity_map, df_left=left, df_right=right, id_left='company_id', id_right='company_id' ) matches = training.matches_reorder( matches, matches_id_left='left', matches_id_right='right' ) matches.head() ```
| | left | right | |-----|------|-------| | 0 | 0 | 34 | | 1 | 1 | 267 | | 2 | 2 | 141 | | 3 | 3 | 46 | | 4 | 4 | 149 |
Let’s track down the observations from *matches* in *left* . ``` python left_index = matches.loc[4,'left'] left[left.index==left_index] ```
| | company_id | company_name | city | industry | purpose | bs_text | found_year | |----|----|----|----|----|----|----|----| | 4 | 01077b1f46 | GEBRÜDER ZSCHILLE TUCHFABRIK | GROSSENHAIN | TEXTIL-INDUSTRIE. | ÜBERNAHME UND FORTBETRIEB DER DER FIRMA GEBR. ... | | 1899.0 |
and *right* ``` python right_index = matches.loc[4,'right'] right[right.index==right_index] ```
| | company_id | company_name | city | industry | purpose | bs_text | found_year | |----|----|----|----|----|----|----|----| | 149 | 721ce62f33 | GEBRÜDER ZSCHILLE TUCHFABRIK AKTIENGESELLSCHAF... | GROSSENHAIN | TEXTIL-INDUSTRIE. | ÜBERNAHME UND FORTBETRIEB DER DER FIRMA GEBR. ... | GRUNDST CKE U GEB UDE MASCHINEN U UTENSILIEN F... | 1899.0 |
## Splitting data Subsequently, we need to split the data into training and test sets, each consisting of three DataFrames. The training ratio is given by $\text{training_ratio} = 1 - (\text{test_ratio} + \text{validation_ratio})$. Note that since validation is not implemented yet, you can set $\text{validation_ratio} = 0$. ``` python from neer_match_utilities.split import split_test_train left_train, right_train, matches_train, left_validation, right_validation, matches_validation, left_test, right_test, matches_test = split_test_train( left = left, right = right, matches = matches, test_ratio = .5, validation_ratio = .0 ) ``` ``` python matches_train.head() ```
| | left | right | |-----|------|-------| | 0 | 0 | 18 | | 1 | 1 | 144 | | 2 | 2 | 23 | | 3 | 3 | 262 | | 4 | 4 | 291 |
``` python left_train[ left_train.index.isin( matches_train['left'].head() ) ] ```
| | company_id | company_name | city | industry | purpose | bs_text | found_year | index_original | |----|----|----|----|----|----|----|----|----| | 0 | 008fbe2454 | BETRAG IN RÜCKZAHLBAR VERSTÄRKTE | RÜCKZAHLBAR | ELEKTRISCHE STRASSENBAHNEN, KLEIN- UND PFERDEB... | | BAHNH FE U GRUNDST CKE BAHNBAU U H LEITUNG MOT... | NaN | 0 | | 1 | 00a050af9d | ZUCKERFABRIK HARSUM IN HARSUM, PROV. HANNOVER. | HANNOVER | ZUCKER-FABRIKEN UND ZUCKER-RAFFINERIEN. | FABRIKATION VON ROHZUCKER. PRODUKTION 1896/97–... | GRUNDST CK M GEB UDE M MASCHINEN U APPARATE M | 1873.0 | 1 | | 2 | 00d74f0e0b | DEUTSCHE RÜCK- U. MITVERSICHERUNGS-GESELLSCHAF... | BERLIN | VERSICHERUNGS-GESELLSCHAFTEN ALLER BRANCHEN. | | AKTIENWECHSEL M EFFEKTEN M HYP DARLEHEN M INVE... | 1885.0 | 3 | | 3 | 024d595151 | MOHLER, DEVIN & CIE., OBEREHNHEIM. | | TEXTIL-INDUSTRIE. | WOLL- U. BAUMWOLLWEBEREI, AUCH EIGENE FÄRBEREI... | KASSA M MASCHINEN M DEBITOREN M WARENBESTAND M... | NaN | 8 | | 4 | 02875aab9c | ACT.-GES. TONWERKE WÜBBENHORST IN DELMENHORST. | DELMENHORST | INDUSTRIE DER STEINE UND ERDEN. | ERWERB U. BETRIEB VON ZIEGELEIEN U. TONWARENFA... | AKTIVA GRUNDST CKE GEB UDE ANSCHLUSSGLEIS MASC... | 1911.0 | 9 |
``` python right_train[ right_train.index.isin( matches_train['right'].head() ) ] ```
| | company_id | company_name | city | industry | purpose | bs_text | found_year | index_original | |----|----|----|----|----|----|----|----|----| | 18 | 2eece3dd52 | BETRAG IN RÜCKZAHLBAR VERSTÄRKTE | RÜCKZAHLBAR | ELEKTRISCHE STRASSENBAHNEN, KLEIN- UND PFERDEB... | | BAHNH FE U GRUNDST CKE BAHNBAU OBERIRDISCHE LE... | NaN | 34 | | 23 | 3a50b36f26 | DEUTSCHE RÜCK- U. MITVERSICHERUNGS-GESELLSCHAF... | BERLIN | VERSICHERUNGS-GESELLSCHAFTEN ALLER BRANCHEN. | | AKTIENWECHSEL M EFFEKTEN M HYPOTHEKENDARLEHEN ... | 1885.0 | 46 | | 144 | 9740c7f92f | ZUCKERFABRIK HARSUM IN HARSUM. | HARSUM | NAHRUNGS- UND GENUSSMITTEL-INDUSTRIE. | FABRIKATION VON ROHZUCKER. | GRUNDST CK M GEB UDE M MASCHINEN U APPARATE M | 1873.0 | 267 | | 262 | dcf18a4b38 | MOHLER, DEVIN & CIE., OBEREHNHEIM. | | TEXTIL-INDUSTRIE. | WOLL- U. BAUMWOLLWEBEREI, AUCH EIGENE FÄRBEREI... | KASSA MASCHINEN DEBITOREN WARENBESTAND PASSIVA... | NaN | 526 | | 291 | eaa6910702 | \*ACT.-GES. TONWERKE WÜBBENHORST IN DELMENHORST. | DELMENHORST | INDUSTRIE DER STEINE UND ERDEN. | ERWERB U. BETRIEB VON ZIEGELEIEN U. TONWARENFA... | | 1911.0 | 583 |